# Phosphine-Participated Cluster Formation: Syntheses, Structures, and Magnetic Properties of Tri- and Tetracobalt Phosphine Complexes of o-Mercaptophenol (H<sub>2</sub>mp), $Co_3(mp)_2(Hmp)_2(PEt_3)_3$ and $Co_4(mp)_4(PBu_3)_3Cl(MeOH)$

## Bei-Sheng Kang, Yong-Jin Xu, Xiu-Lan Xie, Chang-Neng Chen, Qiu-Tian Liu, Han-Qin Liu, and Jia-Xi Lu

State Key Laboratory of Structural Chemistry and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Received December 15, 1993®

Neutral tri- and tetracobalt complexes  $Co_3(mp)_2(Hmp)_2(PEt_3)_3$  (1) and  $Co_4(mp)_4(PBun_3)_3Cl(MeOH)$  (2) with mixed trialkylphosphine and o-mercaptophenolate (mp<sup>2-</sup>) ligands were obtained by the reactions of cobaltous salts with mp<sup>2~</sup> in the presence of phosphine in alcoholic solutions. Complex 1 crystallizes in the triclinic space group  $P\bar{1}$ , with fw = 1029.95, a = 13.668(5) Å, b = 16.988(6) Å, c = 11.237(3) Å,  $\alpha = 100.36(2)^{\circ}$ ,  $\beta = 103.90(3)^{\circ}$ ,  $\gamma$ =  $81.41(3)^\circ$ , V = 2476.0 Å<sup>3</sup>, Z = 2, R = 0.055, and  $R_w = 0.057$ . Complex 2 crystallizes also in the triclinic space group  $P\overline{1}$ , with fw = 1406.85, a = 13.316(6) Å, b = 24.721(7) Å, c = 11.946(4) Å,  $\alpha = 91.20(3)^{\circ}$ ,  $\beta = 111.83(3)^{\circ}$ ,  $\gamma = 75.17(3)^\circ$ ,  $V = 3516.9 \text{ Å}^3$ , Z = 2, R = 0.066, and  $R_w = 0.067$ . Structural analyses revealed that both complexes are unsymmetrical due to the different bonding characters of the sulfur and oxygen donor atoms of the o-mercaptophenol ligand. Possible reactive fragments are proposed for the formation of these complexes. Variable-temperature magnetic susceptibility measurements revealed the antiferromagnetic interaction in 1 and 2.

### Introduction

The coordination chemistry of transition metal complexes with mixed phosphine and thiolato ligands has attracted the attention of inorganic chemists as early as the sixties, 1-3 yet systematic studies and investigations of the coordination behavior are still frugal. For the complexes containing both phosphine and thiolato ligands, they can be classified into four categories, those with either both ligands monodentate or both bidentate and those with either the phosphine ligand monodentate and the thiolato ligand bidentate or vice versa. Since the synthesis of the first dinuclear cobalt complex with bidentate dppe4 and monodentate thiophenlate,<sup>5,6</sup> a series of such mixed-ligated cobalt complexes has been reported.<sup>7-13</sup> However, it is surprising to note that before the successful isolation and characterization of the tricobalt complex Co<sub>3</sub>(bdt)<sub>3</sub>(PBu<sup>n</sup><sub>3</sub>)<sub>3</sub>,<sup>4,10</sup> polynuclear cobalt complexes with mixed monodentate phosphine and 1,2-bidentate thiolate ligations were unknown.

We are engaged in the investigation of the structural chemistry of this latter type of cobalt complex and have reported the cluster

- (7) Wei, G. W.; Hong, M. C.; Huang, Z. Y.; Liu, H. Q. J. Chem. Soc., Wei, G. W.; Hong, M. C.; Huang, Z. Y.; Liu, H. Q. J. Chem. Soc., Dalton Trans. 1991, 3145.
   Jiang, F. L.; Wei, G. W.; Huang, Z. Y.; Lei, X. J.; Hong, M. C.; Kang, B. S.; Liu, H. Q. J. Coord. Chem. 1992, 25, 183.
   Kang, B. S.; Xu, Y. J.; Wu, D. X.; Peng, J. H.; Hong, M. C.; Weng, L. H.; Chen, X. T.; Liu, H. Q. Sci. China 1993, 23B, 132.
   Kang, B. S.; Peng, J. H.; Hong, M. C.; Wu, D. X.; Chen, X. T.; Weng, L. H.; Li, Y. L. Liu, H. Q. Chem. Soc. Dalton Trans. 1991, 2897

- L. H.; Lei, X. J.; Liu, H. Q. J. Chem. Soc., Dalton Trans. 1991, 289
- (11) Kang, B. S.; Xu, Y. J.; Peng, J. H.; Wu, D. X.; Chen, X. T.; Hu, Y. H.;
- Hong, M. C.; Lu, J. X. Polyhedron 1993, 12, 871.
   (12) Xu, Y. J.; Kang, B. S.; Chen, X. T.; Hu, Y. H. Chin. Chem. Lett. 1992, 3, 1017.
- (13) Xu, Y. J.; Kang, B. S.; Chen, X. T.; Cai, Y. B.; Hu, Y. H.; Lu, J. X. J. Cluster Sci. 1992, 3, 167.

complex  $Co_4(mp)_4(Hmp)(PBu_3)_3$ .<sup>4,13</sup> By variation of the molar ratio of the reactants and changing of the reaction conditions such as the amount of air, two new cluster complexes  $Co_3(mp)_2$ - $(Hmp)_2(PEt_3)_3(1)^{12}$  and  $Co_4(mp)_4(PBu^n_3)_3Cl(MeOH)(2)$  were obtained and are presented in this paper. Also included are the crystal structures and variable-temperature magnetic susceptibility measurements.

### **Experimental Section**

All operations were carried out under a dinitrogen atmosphere with Schlenk type apparatus unless otherwise stated. o-Mercaptophenol (H2mp), tri-n-butylphosphine (PBun3), and triethylphosphine (PEt3) purchased from Merck-Schuchardt and anhydrous cobaltous chloride or cobaltous acetate were used as received. Absolute ethanol was flushed with pure dinitrogen for 2-3 min before use. Sodium methoxide was prepared by dissolving sodium metal in dry methanol and then evaporating the solvent and drying under reduced pressure. Elemental analyses were performed by the Chemical Analysis Division of this Institute.

Preparation of Compounds. Co<sub>3</sub>(mp)<sub>2</sub>(Hmp)<sub>2</sub>(PEt<sub>3</sub>)<sub>3</sub> (1). To a solution containing 0.21 g (1.62 mmol) of CoCl<sub>2</sub> and 0.33 g (6.11 mmol) of NaOMe in 30 mL of absolute EtOH was added 0.24 mL (1.63 mmol) of PEt<sub>3</sub> (d = 0.81 g·cm<sup>-3</sup>) via a syringe. After the mixture was stirred for a while, 0.16 mL of H<sub>2</sub>mp (1.55 mmol) was added. The solution was filtered immediately after the quick mixing. The dark brown filtrate was kept at 5 °C for several days to give 0.36 g (65% yield based on Co) of very hygroscopic and air-sensitive black cubic crystals of 1. It was observed that single crystals suitable for X-ray diffraction analysis can be obtained with the presence of an excess of NaOMe. IR (KBr; cm<sup>-1</sup>): 419 (m), 465 (w), 625 (m), 717 (s), 749 (s), 757 (sh), 848 (m), 1001 (m), 1032 (s), 1122 (m), 1149 (w), 1233 (s), 1266 (s), 1300 (s), 1379 (m), 1438 (sh), 1452 (s), 1560 (m), 1573 (m), 2876 (m), 2910 (m), 2934 (m), 2964 (m), 3054 (w). <sup>31</sup>P NMR: 54.4 ppm (broad,  $\Delta \delta = 30$  ppm). Anal. Calcd for C42H63C03O4P3S4: C, 48.98; H, 6.17; Co, 17.17; P, 9.02. Found: C, 50.81; H, 7.33; Co, 16.82; P, 9.04.

Co<sub>4</sub>(mp)<sub>4</sub>(PBu<sup>#</sup><sub>3</sub>)<sub>3</sub>Cl(MeOH) (2). To the solution of 0.10 g (0.77 mmol) of CoCl<sub>2</sub> in 30 mL of MeOH was added first 0.4 mL (1.61 mmol) of PBu<sup> $n_3$ </sup> with stirring and then 0.01 mL (0.097 mmol) of H<sub>2</sub>mp at room temperature. After filtration, the reddish brown filtrate gave 0.022 g (8% yield based on Co) of dark block-shaped crystals of product 2. The addition of NaOMe did not change the product. IR (KBr; cm<sup>-1</sup>): 720 (s), 742 (s), 774 (m), 848 (m), 901 (s), 1049 (m), 1090 (m), 1119 (w), 1208 (w), 1234 (w), 1269 (m), 1304 (m), 1411 (w), 1437 (s), 1450 (s), 1573 (m), 2868 (s), 2929 (s), 2954 (s), 3050 (w). Anal. Calcd for

<sup>\*</sup> Abstract published in Advance ACS Abstracts, July 15, 1994.

Balch, A. L. Inorg. Chem. 1967, 6, 2158.
 Balch, A. L. Inorg. Chem. 1971, 10, 388.
 Schrauzer, G. N.; Mayweg, V. P.; Finck, H. W.; Heinrich, W. J. Am. Chem. Soc. 1966, 88, 4606. (4) Abbreviations: bdt = 1,2-benzenedithiolate; mp = o-mercaptophenolate;

Hmp = o-hydroxybenzenethiolate; dppe = (diphenylphosphino)ethane; mpo = 2-mercaptopyridine N-oxide.
Wei, G. W.; Liu, H. Q.; Huang, Z. Y.; Huang, L. R.; Kang, B. S. J.

Table 1. Crystallographic Data for Complexes 1 and 2

|                                      | 1               | 2                                                                                               |
|--------------------------------------|-----------------|-------------------------------------------------------------------------------------------------|
| formula                              | C42H63C03O4P3S4 | C <sub>61</sub> H <sub>101</sub> ClC0 <sub>4</sub> O <sub>5</sub> P <sub>3</sub> S <sub>4</sub> |
| fw                                   | 1029.95         | 1406.85                                                                                         |
| space group                          | Pī (No. 2)      | P1 (No. 2)                                                                                      |
| a, Å                                 | 13.668(5)       | 13.316(6)                                                                                       |
| b, Å                                 | 16.988(6)       | 24.721(7)                                                                                       |
| c, Å                                 | 11.237(3)       | 11.946(4)                                                                                       |
| $\alpha$ , deg                       | 100.36(2)       | 91.20(3)                                                                                        |
| $\beta$ , deg                        | 103.90(3)       | 111.83(3)                                                                                       |
| $\gamma$ , deg                       | 81.41(3)        | 75.17(3)                                                                                        |
| V, Å <sup>3</sup>                    | 2476.0          | 3516.9                                                                                          |
| Ζ                                    | 2               | 2                                                                                               |
| <i>T</i> , °C                        | 23              | 23                                                                                              |
| $D_{\text{calcd}}, \text{g-cm}^{-3}$ | 1.38            | 1.33                                                                                            |
| $\mu,  \text{cm}^{-1}$               | 12.9            | 11.9                                                                                            |
| transm coeff                         | 0.890-0.999     | 0.872-0.997                                                                                     |
| Rª                                   | 0.055           | 0.066                                                                                           |
| R <sub>w</sub> <sup>b</sup>          | 0.057           | 0.067                                                                                           |

 ${}^{a}R = (\sum ||F_{o}| - |F_{c}||) / \sum |F_{o}|. {}^{b}R_{w} = \{ \sum w(|F_{o}| - |F_{c}|)^{2} \} / \sum w|F_{o}|^{2} \}^{1/2}.$ 

C<sub>61</sub>H<sub>101</sub>ClCo<sub>4</sub>O<sub>5</sub>P<sub>3</sub>S<sub>4</sub>: Co, 16.76; Cl, 2.52; P, 6.60; S, 91.2. Found: Co, 15.98; Cl, 2.30; P, 6.42; S, 8.12.

Structure Determination. Single crystals of compounds 1 and 2 of suitable dimensions were sealed inside glass capillaries under nitrogen. Diffraction data were collected on a Rigaku AFC-5R diffractometer in the  $\omega$ -2 $\theta$  scan mode with Mo K $\alpha$  radiation ( $\lambda = 0.710$  69 Å) and a graphite monochromator. The parameters utilized in intensity collections and refinements together with the crystallographic data are summarized in the supplementary material. All calculations were performed on a VAX 11/785 computer using the SDP/VAX program package.

The intensity data collected were corrected for Lp factors and empirical absorptions. The structures were solved by direct methods and difference Fourier syntheses and refined by full-matrix least-squares techniques with anisotropic thermal parameters for all the non-hydrogen atoms. The hydrogen atoms except H<sub>b</sub> of 1 were added only to the structure factor calculations, but their positions were not refined. The position of H<sub>b</sub> of 1 was refined isotropically. The crystallographic data for complexes 1 and 2 are listed in Table 1.

Physical Measurements. Infrared spectra (KBr pellet) were recorded on a Digilab FTS-40 spectrophotometer. <sup>31</sup>P NMR spectra were obtained from a Bruker AM500 NMR spectrometer, with 85% H<sub>3</sub>PO<sub>4</sub> as external standard. The <sup>31</sup>P chemical shift of free ligand PEt<sub>3</sub> appears at -20.1 ppm.<sup>14</sup> Chemical shifts are quoted on the  $\delta$  scale (downfield shifts are positive). Variable-temperature magnetic susceptibility of compound 1 was measured on a Shimadzu MB-2 magnetic balance at a magnetic field of 1.2 T with the temperature of the sample raised gradually from 70 to 300 K, while that of compound 2 was performed on a Model CF-1 superconducting extracting sample magnetometer at a magnetic field of 5.0 T with the powdered samples kept in capsules for weighing. The temperature of the latter was raised gradually from 1.5 to 300 K. Data were recorded at an applied field gradient H(dH/dX) of  $1.4 \times 10^7$  Oe  $\times$  Oe/cm. An interval of 30 s was kept between data collection, and each measurement took 10 s. Values of g, J, and TIP are obtained by a QCP230 program.<sup>15</sup> Calculations were done on the VAX 11/785 computer with the VAX/VMS operating system.

#### **Results and Discussion**

Synthesis and Structure. In the presence of phosphine, the products of the reaction of Co(II) salt with o-mercaptophenolate in protic solvents (MeOH or EtOH) vary not only with the molar ratio of the reactants but also with whether or not air is strictly excluded. When 1:1:1 ratio of Co<sup>2+</sup>:H<sub>2</sub>mp:PR<sub>3</sub> was employed in the presence of excess of NaOMe, the tricobalt complexed Co<sub>3</sub>- $(mp)_2(Hmp)_2(PEt_3)_3$  (1) was obtained anaerobically overnight, which has been preliminarily communicated.12 When the reaction solution of 1:1:2 molar ratio of reagents was left in an icebox for a long period of time (1 month), a certain amount of air might

Scheme 1



have leaked into the Schlenk tube and the product identified was  $Co_4(mp)_4(Hmp)(PBu_{3})_3$  (3)<sup>13</sup> in which one Co atom is in the oxidized form. If a molar ratio of 1:0.1:2 of the starting reagents was used, only the product  $Co_4(mp)_4(PBu^n_3)_3Cl(MeOH)$  (2) was isolated in low yield (based on Co) due to insufficient amount of the ligand mp. Complex 2 cannot be isolated if the reaction is strictly anaerobic but can be formed when a trace of air was passed into the reaction solution, again indicating the coordination of Co(III) because of air oxidation. The reactions can be summarized in the Scheme 1.

1

The reaction might have proceeded through the substitution of mp<sup>2-</sup> onto the initially formed (PR<sub>3</sub>)<sub>2</sub>CoCl<sub>2</sub> giving the metastable intermediates  $(mp)_x Co(PR_3)_y \sim (x = 1, y = 1, 2, n)$ = 0; x = 2, y = 1, 2, n = 2). These latter intermediates are too reactive to be isolated and interact rapidly with other species such as  $Co(mp)_2^{2-}$  or/and  $Co(PR_3)_2Cl_2$  in solution to give the various products. Species such as  $L_2Co(PBu_3)^n$  (L = mpo,<sup>4</sup> n = 0;<sup>11</sup> L = bdt,<sup>4</sup>,  $n = 1^{10}$ ) with Co(II) or Co(III) in a square pyramidal environment are stable and have been identified structurally. The reactive fragments with L = mp may assemble under suitable conditions to form various types of multinuclear complexes whose isolation depends on the basicity of the solution and the solvents. In the cases of 1-3, protic solvents favor the formation of intramolecular hydrogen bonds and stabilize the molecules.

The atomic coordinates and their standard deviations and thermal parameters of the non-hydrogen atoms of complexes 1 and 2 are listed in Tables 2 and 3, respectively. Selected atomic distances and bond angles of 1 and 2 are listed in Tables 4 and 5, respectively.

Figure 1 depicts the structure of 1. The molecule is highly unsymmetrical due to the presence of two intramolecular hydrogen bonds. The three Co atoms form a nonequilateral triangle with varied Co-Co distances which are significantly shorter than those in another tricobalt-thiolato complex  $[Co_3S(o-(SCH_2)_2C_6H_4)_3]^{2-1}$ (average 2.780(6) Å),<sup>16</sup> in which all the Co atoms are tetrahedrally coordinated by sulfur atoms and bridged by a  $\mu_3$ -S, although the tetrahedral S-coordinated Co complex [Co<sub>8</sub>S<sub>6</sub>(SC<sub>6</sub>H<sub>5</sub>)<sub>8</sub>]<sup>4-17</sup> was found to have short Co-Co distances (2.662(16) Å). The S and O donor atoms from four o-mercaptophenol ligands bridge the three Co atoms, while a PEt<sub>3</sub> group is terminally coordinated to each Co atom, resulting in two coordination geometries for the metal environments: 4-coordinated trigonal pyramidal Co(1)- $S_2OP$  with O(4) in the apex and 5-coordinate square pyramidal  $Co(2 \text{ or } 3)S_3OP$  with P in the apex.

<sup>(14)</sup> Gorenstein, D. G. Phosphorus 31 NMR. Principles and Applications;

Academic Press: New York, 1984; p 553. (15) A nonlinear fitting program from the Quantum Chemistry Program Exchange (QCPE) Center of the University of Indianna developed by James H. Head of the Department of Physics, United States Air Force Academy, Colorado Springs, CO.

 <sup>(16)</sup> Henkel, G.; Tremel, W.; Krebs, B. Angew. Chem. 1983, 22, 318.
 (17) Christou, G.; Hagen, K. S.; Holm, R. H. J. Am. Chem. Soc. 1982, 104,

<sup>1744.</sup> 



Figure 1. Structure of  $Co_3(mp)_2(Hmp)_2(PEt_3)_3$  (1). Carbon atoms of the phenyl rings and of the ethyl groups of the phosphine are represented by spheres of arbitrary size for clarity.



(R3P)Co(mpH)2 + 2(R3P)Comp

Figure 2. Schematic view of complex  ${\rm Co}_3(mp)_2(Hmp)_2(PEt_3)_3$  (1) with atomic labeling.

The four *o*-mercaptophenolate ligands coordinate to the Co atoms in three different modes  $O_bS_b$ -T,  $O_tS_b$ , and  $HOS_b$ :



Here b stands for bridge, t for terminal, and T for trinuclear. The chelating modes  $O_bS_b$ -T and  $O_tS_b$  have been observed in  $Co_4$ -(mp)<sub>4</sub>(Hmp)(PBu<sup>n</sup><sub>3</sub>)<sub>3</sub> (3)<sup>10</sup> and mode HOS<sub>b</sub> in [Ni<sub>2</sub>(mp)<sub>2</sub>-(Hmp)<sub>2</sub>]<sup>2-;18</sup> the latter complex was also stabilized by intramolecular hydrogen bonds.

On close examination of the Co-S and Co-O distances, it is found that they are obviously shorter within a five-membered chelate ring than outside in both complexes 1 and 2, which is generally true for most 1,2-bidentate chelations, as compared in Table 6 together with complex 3.

In complex 1, bidentate thiolate mp3 (with donor atoms O(3) and S(3)) and mp4 (O(4) and S(4)) can be considered terminally chelated to Co(2) and Co(3), respectively, since Co(3)–S(3)<sub>out</sub> (2.242(3) Å), Co(2)–S(4)<sub>out</sub> (2.240(2) Å), and Co(1)–O(4)<sub>out</sub> (2.222(6) Å) are longer than the respective bonds Co(2)–S(3)<sub>in</sub>

(2.212(3) Å), Co(3)–S(4)<sub>in</sub> (2.201(2) Å), and Co(3)–O(4)<sub>in</sub> (1.995(5) Å) of the same chelate ring. In the meantime, Hmp2 (donor atom S(2)) and Hmp1 (S(1)) can be considered monodentately ligated to Co(1) through the sulfur atoms as Co(1)– S(2) and Co(1)–S(1) are slightly (0.01–0.03 Å) but evidently shorter than Co(2)–S(2) and Co(3)–S(1), respectively. In this way, the molecule can be envisaged as the combination of one R<sub>3</sub>PCo(Hmp)<sub>2</sub> (a) and two R<sub>3</sub>PCo(mp) (b) groups as shown in Figure 2. Since we have not been able to isolate binuclear species like (R<sub>3</sub>P)<sub>2</sub>Co<sub>2</sub>(mp)<sub>y</sub> (y = 1-3, n = 2+, 0, or 2–), the construction process of a molecule of 1—whether by spontaneous assembly of mononuclear species **a** and **b** or by stepwise reaction through a binuclear species—cannot be determined for the time being.

In addition to the bridging effect of the S and O atoms of the mercaptophenol ligands, the molecule of 1 is stabilized further by two strong intramolecular H-bonds between  $O(3) \cdots O(2)$  (2.499 Å) and  $O(1) \cdots O(4)$  (2.535 Å).

The molecular structure of complex 2 as depicted in Figure 3 is very similar to that reported for  $Co_4(mp)_4(Hmp)(PBu_{1}^n)_3(3)^{13}$ except for the ligation of Co(4), where the bidentate omercaptophenolate group has been substituted by a Cl ion and a MeOH molecule. On comparison (Table 6), we can see that all the important structural parameters are nearly the same for the complexes 2 and 3. The ligation of Cl to Co(4) changes electronically but only slightly the geometry of the molecule. The Co(4)-Cl distance of 2.284(6) Å is rather long compared to other Co(III)-Cl distances either in 5-coordinate Co(PEt<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub> (2.196-(2) Å)<sup>19</sup> or in 6-coordinate trans- $[Co\{o-(Me_2P)_2C_6H_4\}_2Cl_2]^+$  $(2.253 \text{ Å})^{20}$  and implies a rather weak binding and can be easily substituted by other coordinating groups like an excess of  $H_2mp$ . The ligation of MeOH stabilizes the molecule in two ways; it not only completes the coordination sphere of the Co(4) atom but also provides a very strong hydrogen bond intramolecularly (O-O-(4) = 2.360 Å).

The bond length differences in complex 2 of the bridging Co–S and Co–O bonds inside and outside the five-membered chelate rings S-C-C-O-Co lead to the assumption of the presence of fragment Bu<sub>3</sub>PCo(mp)<sub>2</sub><sup>2-</sup>, two of which on coordination by species (Bu<sub>3</sub>P)<sub>2</sub>CoCl<sub>2</sub> and Co<sup>111</sup>Cl<sub>4</sub><sup>-</sup> present in solution gave the tetranuclear product 2 as schematically depicted in Figure 4.

As only 0.01 mL (0.1 mmol) of  $H_2mp$  was added in the preparative process of 2, being one-eighth the amount needed for 3, the yield of 2 was very low. However, the trace amount of air present in the reaction system was just enough to oxidize some of the Co(II) into Co(III) for coordination. When the amounts of starting materials were increased 5-fold, no product 2 could be isolated without the deliberate addition of dry air. If more  $mp^{2-}$  was added, 2 was rapidly transformed into 3 (identified by single-crystal unit cell parameters). It is worthwhile to note that the production of complex 2 is not affected by the basicity of the reaction. On the other hand, the complexes 1 and 3 are obtained only under basic conditions.

Magnetic Properties. The magnetic properties of a polynuclear complex are extremely sensitive to structural modifications. On the basis of variable-temperature magnetic susceptibility measurements, the magnetic properties of 1 and 2 can be derived in terms of antiferromagnetic interactions and relation is drawn between magnetic behavior and the molecular structures.

The temperature-dependent behaviors of the effective magnetic moments of the two complexes are similar. They rise quickly in

<sup>(18)</sup> Kang, B. S.; Weng, L. H.; Liu, H. Q.; Wu, D. X.; Huang, L. R.; Lu, C. Z.; Cai, J. H.; Chen, X. T.; Lu, J. X. Inorg. Chem. 1990, 29, 4873.

<sup>(19)</sup> Levason, W.; Ogden, J. S.; Spicer, M. D. Inorg. Chem. 1989, 28, 2128.
(20) Waren, L. F.; Bennett, M. A. Inorg. Chem. 1976, 15, 3126.

Table 2. Positional Parameters and Their Estimated Standard Deviations for the Tricobalt Complex 1

|            |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| x          | у                                                                                                                                                                                                                                                                                                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B <sup>a</sup> (Å <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>B</b> <sup>a</sup> (Å <sup>2</sup> )                |
| 0.2416(1)  | 0.21294(9)                                                                                                                                                                                                                                                                                           | 0.8944(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.39(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1727(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5405(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.998(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1(4)                                                 |
| 0.1460(1)  | 0.27066(9)                                                                                                                                                                                                                                                                                           | 0.6891(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.42(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1321(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4687(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.967(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0(4)                                                 |
| 0.3358(1)  | 0.24716(8)                                                                                                                                                                                                                                                                                           | 0.7424(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.16(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1546(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4125(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.867(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7(3)                                                 |
| 0.3600(2)  | 0.2953(2)                                                                                                                                                                                                                                                                                            | 0.9426(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.74(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2643(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0920(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5951(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.9(3)                                                 |
| 0.1094(2)  | 0.1669(2)                                                                                                                                                                                                                                                                                            | 0.7602(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.32(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2275(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0305(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5080(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0(3)                                                 |
| 0.2457(2)  | 0.3590(2)                                                                                                                                                                                                                                                                                            | 0.6775(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.05(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2481(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.0478(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5327(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1(3)                                                 |
| 0.2418(2)  | 0.1931(2)                                                                                                                                                                                                                                                                                            | 0.5675(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.58(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3049(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.0642(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6480(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5(3)                                                 |
| 0.2429(2)  | 0.1669(2)                                                                                                                                                                                                                                                                                            | 1.0654(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.80(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3411(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.0010(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7380(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8(3)                                                 |
| 0.0050(2)  | 0.3009(2)                                                                                                                                                                                                                                                                                            | 0.5512(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3209(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0754(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7099(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2(3)                                                 |
| 0.4816(2)  | 0.2569(2)                                                                                                                                                                                                                                                                                            | 0.6934(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.08(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3652(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1136(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.129(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.9(4)                                                 |
| 0.5215(5)  | 0.1316(4)                                                                                                                                                                                                                                                                                            | 0.9515(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(112)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.370(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.071(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.242(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.3(6)                                                 |
| 0.0146(6)  | 0.2972(4)                                                                                                                                                                                                                                                                                            | 0.9626(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(121)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.209(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2412(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.191(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5(5)                                                 |
| 0.1166(5)  | 0.3424(4)                                                                                                                                                                                                                                                                                            | 0.8355(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(122)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.264(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3143(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.224(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.8(6)                                                 |
| 0.3538(5)  | 0.1388(4)                                                                                                                                                                                                                                                                                            | 0.7946(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(131)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1543(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.919(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.053(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.5(4)                                                 |
| 0.4833(7)  | 0.2706(6)                                                                                                                                                                                                                                                                                            | 1.0393(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(132)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.172(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0153(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.964(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.7(5)                                                 |
| 0.5448(7)  | 0.1984(7)                                                                                                                                                                                                                                                                                            | 1.0313(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(211)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.032(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3364(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.419(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.9(5)                                                 |
| 0.6391(8)  | 0.1952(8)                                                                                                                                                                                                                                                                                            | 1.113(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(212)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.053(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.353(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.314(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.4(8)                                                |
| 0.6700(8)  | 0.2580(8)                                                                                                                                                                                                                                                                                            | 1.198(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(221)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0770(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2206(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.488(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.3(5)                                                 |
| 0.6090(9)  | 0.3303(7)                                                                                                                                                                                                                                                                                            | 1.209(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(222)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.028(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.149(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.417(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.6(6)                                                |
| 0.5135(8)  | 0.3371(7)                                                                                                                                                                                                                                                                                            | 1.1266(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(231)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.088(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.376(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.611(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.1(7)                                                |
| -0.0063(7) | 0.1758(5)                                                                                                                                                                                                                                                                                            | 0.8108(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(232)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.135(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.389(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.669(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16(2)                                                  |
| -0.0654(8) | 0.1144(6)                                                                                                                                                                                                                                                                                            | 0.7610(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(232')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.061(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.554(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.360(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12(1)                                                  |
| -0.1506(8) | 0.1087(7)                                                                                                                                                                                                                                                                                            | 0.800(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(311)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5661(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3249(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.798(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.4(4)                                                 |
| -0.1790(8) | 0.1640(7)                                                                                                                                                                                                                                                                                            | 0.891(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(312)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.520(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4117(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.822(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1(4)                                                 |
| -0.1250(8) | 0.2275(6)                                                                                                                                                                                                                                                                                            | 0.941(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(321)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5674(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1651(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.679(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0(3)                                                 |
| -0.0370(7) | 0.2341(6)                                                                                                                                                                                                                                                                                            | 0.9037(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(322)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5268(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0990(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.578(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.9(4)                                                 |
| 0.2192(7)  | 0.4315(6)                                                                                                                                                                                                                                                                                            | 0.799(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(331)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4588(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2918(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.543(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.7(4)                                                 |
| 0.2593(8)  | 0.5045(6)                                                                                                                                                                                                                                                                                            | 0.830(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(332)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.556(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.297(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.498(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.0(7)                                                |
| 0.2375(9)  | 0.5592(7)                                                                                                                                                                                                                                                                                            | 0.930(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.1(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | НЬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.064(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.329(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.921(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6(3)*                                                  |
|            | x<br>0.2416(1)<br>0.1460(1)<br>0.3358(1)<br>0.3600(2)<br>0.1094(2)<br>0.2457(2)<br>0.2418(2)<br>0.2429(2)<br>0.0050(2)<br>0.4816(5)<br>0.35318(5)<br>0.4833(7)<br>0.5448(7)<br>0.6391(8)<br>0.6700(8)<br>0.6090(9)<br>0.5135(8)<br>-0.0654(8)<br>-0.1250(8)<br>-0.1250(8)<br>-0.2593(8)<br>0.2375(9) | xy $0.2416(1)$ $0.21294(9)$ $0.1460(1)$ $0.27066(9)$ $0.3358(1)$ $0.24716(8)$ $0.3358(1)$ $0.24716(8)$ $0.3600(2)$ $0.2953(2)$ $0.1094(2)$ $0.1669(2)$ $0.2457(2)$ $0.3590(2)$ $0.2418(2)$ $0.1669(2)$ $0.2429(2)$ $0.1669(2)$ $0.0050(2)$ $0.3009(2)$ $0.4816(2)$ $0.2569(2)$ $0.5215(5)$ $0.1316(4)$ $0.0146(6)$ $0.2972(4)$ $0.1166(5)$ $0.3424(4)$ $0.3538(5)$ $0.1388(4)$ $0.4833(7)$ $0.2706(6)$ $0.5448(7)$ $0.1984(7)$ $0.6391(8)$ $0.2580(8)$ $0.6700(8)$ $0.2580(8)$ $0.6090(9)$ $0.3303(7)$ $0.5135(8)$ $0.3371(7)$ $-0.0654(8)$ $0.1144(6)$ $-0.1506(8)$ $0.1640(7)$ $-0.1250(8)$ $0.2275(6)$ $-0.0370(7)$ $0.2341(6)$ $0.2192(7)$ $0.4315(6)$ $0.2375(9)$ $0.5592(7)$ | xyz $0.2416(1)$ $0.21294(9)$ $0.8944(1)$ $0.1460(1)$ $0.27066(9)$ $0.6891(1)$ $0.3358(1)$ $0.24716(8)$ $0.7424(1)$ $0.3600(2)$ $0.2953(2)$ $0.9426(2)$ $0.1094(2)$ $0.1669(2)$ $0.7602(2)$ $0.2457(2)$ $0.3590(2)$ $0.6775(2)$ $0.2418(2)$ $0.1669(2)$ $1.0654(3)$ $0.0050(2)$ $0.3009(2)$ $0.5675(2)$ $0.2429(2)$ $0.1669(2)$ $1.0654(3)$ $0.0050(2)$ $0.3009(2)$ $0.5512(3)$ $0.4816(2)$ $0.2569(2)$ $0.6934(3)$ $0.5215(5)$ $0.1316(4)$ $0.9515(6)$ $0.0146(6)$ $0.2972(4)$ $0.9626(7)$ $0.1166(5)$ $0.3424(4)$ $0.8355(7)$ $0.3538(5)$ $0.1388(4)$ $0.7946(5)$ $0.4833(7)$ $0.2706(6)$ $1.0393(8)$ $0.5448(7)$ $0.1984(7)$ $1.0313(9)$ $0.6391(8)$ $0.1952(8)$ $1.113(1)$ $0.6090(9)$ $0.3303(7)$ $1.209(1)$ $0.5135(8)$ $0.3371(7)$ $1.1266(9)$ $-0.0654(8)$ $0.1144(6)$ $0.7610(9)$ $-0.1506(8)$ $0.1087(7)$ $0.800(1)$ $-0.1506(8)$ $0.12275(6)$ $0.941(1)$ $-0.0370(7)$ $0.2341(6)$ $0.9037(9)$ $0.2192(7)$ $0.4315(6)$ $0.799(1)$ $0.2375(9)$ $0.5592(7)$ $0.930(1)$ | xyz $B^a$ (Å2)0.2416(1)0.21294(9)0.8944(1)3.39(4)0.1460(1)0.27066(9)0.6891(1)3.42(4)0.3358(1)0.24716(8)0.7424(1)3.16(4)0.3600(2)0.2953(2)0.9426(2)3.74(7)0.1094(2)0.1669(2)0.7602(2)3.32(7)0.2457(2)0.3590(2)0.6775(2)4.05(8)0.2418(2)0.1931(2)0.5675(2)3.58(7)0.2429(2)0.1669(2)1.0654(3)4.80(9)0.0050(2)0.3009(2)0.5512(3)5.8(1)0.4816(2)0.2569(2)0.6934(3)4.08(8)0.5215(5)0.1316(4)0.9515(6)4.9(2)0.0146(6)0.2972(4)0.8355(7)4.9(2)0.1166(5)0.3424(4)0.8355(7)4.9(2)0.3538(5)0.1388(4)0.7946(5)3.2(2)0.4833(7)0.2706(6)1.0393(8)3.8(3)0.5448(7)0.1984(7)1.0313(9)4.3(3)0.6391(8)0.1952(8)1.113(1)5.7(4)0.6090(9)0.3303(7)1.209(1)6.0(4)0.5135(8)0.3371(7)1.1266(9)4.7(3)-0.0654(8)0.1144(6)0.7610(9)4.3(3)-0.1506(8)0.1087(7)0.800(1)5.5(4)-0.1790(8)0.1640(7)0.891(1)4.8(3)-0.1250(8)0.2275(6)0.941(1)4.5(3)-0.0370(7)0.2341(6)0.799(1)4.2(3)0.2593(8)0.5045(6)0.830(1)4.8(3)0.2375(9) </td <td>xyz<math>B^a</math> (Å2)atom0.2416(1)0.21294(9)0.8944(1)3.39(4)C(34)0.1460(1)0.27066(9)0.6891(1)3.42(4)C(35)0.3358(1)0.24716(8)0.7424(1)3.16(4)C(36)0.3600(2)0.2953(2)0.9426(2)3.74(7)C(41)0.1094(2)0.1669(2)0.7602(2)3.32(7)C(42)0.2457(2)0.3590(2)0.6775(2)4.05(8)C(43)0.2418(2)0.1931(2)0.5675(2)3.58(7)C(44)0.2429(2)0.1669(2)1.0654(3)4.80(9)C(45)0.0050(2)0.3009(2)0.5512(3)5.8(1)C(46)0.4816(2)0.2569(2)0.6934(3)4.08(8)C(111)0.5215(5)0.1316(4)0.9515(6)4.9(2)C(122)0.0146(6)0.2972(4)0.926(7)5.6(2)C(121)0.1166(5)0.3424(4)0.8355(7)4.9(2)C(122)0.3538(5)0.1388(4)0.7946(5)3.2(2)C(131)0.4833(7)0.2706(6)1.0393(8)3.8(3)C(132)0.5448(7)0.1984(7)1.0313(9)4.3(3)C(211)0.6090(9)0.3303(7)1.209(1)6.0(4)C(222)0.5135(8)0.3371(7)1.1266(9)4.7(3)C(231)-0.0654(8)0.1144(6)0.7610(9)4.3(3)C(322)-0.0654(8)0.1144(6)0.7610(9)4.3(3)C(322)-0.1506(8)0.2756(6)0.941(1)4.5(3)C(322)-0</td> <td>xyz<math>B^a(Å^2)</math>atomx0.2416(1)0.21294(9)0.8944(1)3.39(4)C(34)0.1727(9)0.1460(1)0.27066(9)0.6891(1)3.42(4)C(35)0.1321(9)0.3358(1)0.24716(8)0.7424(1)3.16(4)C(36)0.1546(8)0.3600(2)0.2953(2)0.9426(2)3.74(7)C(41)0.2643(6)0.1094(2)0.1669(2)0.7602(2)3.32(7)C(42)0.2275(7)0.2457(2)0.3590(2)0.6775(2)4.05(8)C(43)0.2481(7)0.2418(2)0.1931(2)0.5675(2)3.58(7)C(44)0.3049(8)0.2429(2)0.1669(2)1.0654(3)4.80(9)C(45)0.3411(7)0.0050(2)0.3009(2)0.5512(3)5.8(1)C(46)0.3209(7)0.4816(2)0.2569(2)0.6934(3)4.08(8)C(111)0.3652(8)0.5215(5)0.1316(4)0.9515(6)4.9(2)C(121)0.209(1)0.1166(5)0.3424(4)0.8355(7)4.9(2)C(122)0.264(1)0.3538(5)0.1388(4)0.7946(5)3.2(2)C(131)0.1543(8)0.4833(7)0.2706(6)1.0393(8)3.8(3)C(132)0.172(1)0.5448(7)0.1984(7)1.0313(9)4.3(3)C(231)-0.053(1)0.6391(8)0.1952(8)1.113(1)5.7(4)C(221)-0.053(1)0.5448(7)0.1984(7)1.209(1)6.0(4)C(222)-0.028(1)0.5448(7)0.1984(7)1.0313(9)4.3(3)<td>xyz<math>B^a(\tilde{A}^2)</math>atomxy0.2416(1)0.21294(9)0.8944(1)3.39(4)C(34)0.1727(9)0.5405(7)0.1460(1)0.27066(9)0.6891(1)3.42(4)C(35)0.1321(9)0.4687(7)0.3358(1)0.24716(8)0.7424(1)3.16(4)C(36)0.1546(8)0.4125(6)0.3600(2)0.2953(2)0.9426(2)3.74(7)C(41)0.2643(6)0.0920(6)0.1094(2)0.1669(2)0.7602(2)3.32(7)C(42)0.2275(7)0.0305(6)0.2457(2)0.3590(2)0.6775(2)4.05(8)C(43)0.2481(7)-0.0478(6)0.2418(2)0.1931(2)0.5675(2)3.58(7)C(44)0.3049(8)-0.0642(6)0.2429(2)0.1669(2)1.0654(3)4.80(9)C(45)0.3411(7)-0.0010(6)0.0050(2)0.3009(2)0.5512(3)5.8(1)C(46)0.3209(7)0.0754(6)0.4816(2)0.2569(2)0.6934(3)4.08(8)C(111)0.3652(8)0.1136(8)0.5215(5)0.1316(4)0.9515(6)4.9(2)C(121)0.209(1)0.2412(9)0.1166(5)0.3242(4)0.8355(7)4.9(2)C(121)0.209(1)0.2413(9)0.3538(5)0.1388(4)0.7946(5)3.2(2)C(131)0.1543(8)0.919(8)0.4833(7)0.2706(6)1.0393(8)3.8(3)C(211)0.032(1)0.3354(1)0.5448(7)0.1984(7)1.0313(9)4.3(3)C(211)-0.035(1)0.353(1)<td< td=""><td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td></td<></td></td> | xyz $B^a$ (Å2)atom0.2416(1)0.21294(9)0.8944(1)3.39(4)C(34)0.1460(1)0.27066(9)0.6891(1)3.42(4)C(35)0.3358(1)0.24716(8)0.7424(1)3.16(4)C(36)0.3600(2)0.2953(2)0.9426(2)3.74(7)C(41)0.1094(2)0.1669(2)0.7602(2)3.32(7)C(42)0.2457(2)0.3590(2)0.6775(2)4.05(8)C(43)0.2418(2)0.1931(2)0.5675(2)3.58(7)C(44)0.2429(2)0.1669(2)1.0654(3)4.80(9)C(45)0.0050(2)0.3009(2)0.5512(3)5.8(1)C(46)0.4816(2)0.2569(2)0.6934(3)4.08(8)C(111)0.5215(5)0.1316(4)0.9515(6)4.9(2)C(122)0.0146(6)0.2972(4)0.926(7)5.6(2)C(121)0.1166(5)0.3424(4)0.8355(7)4.9(2)C(122)0.3538(5)0.1388(4)0.7946(5)3.2(2)C(131)0.4833(7)0.2706(6)1.0393(8)3.8(3)C(132)0.5448(7)0.1984(7)1.0313(9)4.3(3)C(211)0.6090(9)0.3303(7)1.209(1)6.0(4)C(222)0.5135(8)0.3371(7)1.1266(9)4.7(3)C(231)-0.0654(8)0.1144(6)0.7610(9)4.3(3)C(322)-0.0654(8)0.1144(6)0.7610(9)4.3(3)C(322)-0.1506(8)0.2756(6)0.941(1)4.5(3)C(322)-0 | xyz $B^a(Å^2)$ atomx0.2416(1)0.21294(9)0.8944(1)3.39(4)C(34)0.1727(9)0.1460(1)0.27066(9)0.6891(1)3.42(4)C(35)0.1321(9)0.3358(1)0.24716(8)0.7424(1)3.16(4)C(36)0.1546(8)0.3600(2)0.2953(2)0.9426(2)3.74(7)C(41)0.2643(6)0.1094(2)0.1669(2)0.7602(2)3.32(7)C(42)0.2275(7)0.2457(2)0.3590(2)0.6775(2)4.05(8)C(43)0.2481(7)0.2418(2)0.1931(2)0.5675(2)3.58(7)C(44)0.3049(8)0.2429(2)0.1669(2)1.0654(3)4.80(9)C(45)0.3411(7)0.0050(2)0.3009(2)0.5512(3)5.8(1)C(46)0.3209(7)0.4816(2)0.2569(2)0.6934(3)4.08(8)C(111)0.3652(8)0.5215(5)0.1316(4)0.9515(6)4.9(2)C(121)0.209(1)0.1166(5)0.3424(4)0.8355(7)4.9(2)C(122)0.264(1)0.3538(5)0.1388(4)0.7946(5)3.2(2)C(131)0.1543(8)0.4833(7)0.2706(6)1.0393(8)3.8(3)C(132)0.172(1)0.5448(7)0.1984(7)1.0313(9)4.3(3)C(231)-0.053(1)0.6391(8)0.1952(8)1.113(1)5.7(4)C(221)-0.053(1)0.5448(7)0.1984(7)1.209(1)6.0(4)C(222)-0.028(1)0.5448(7)0.1984(7)1.0313(9)4.3(3) <td>xyz<math>B^a(\tilde{A}^2)</math>atomxy0.2416(1)0.21294(9)0.8944(1)3.39(4)C(34)0.1727(9)0.5405(7)0.1460(1)0.27066(9)0.6891(1)3.42(4)C(35)0.1321(9)0.4687(7)0.3358(1)0.24716(8)0.7424(1)3.16(4)C(36)0.1546(8)0.4125(6)0.3600(2)0.2953(2)0.9426(2)3.74(7)C(41)0.2643(6)0.0920(6)0.1094(2)0.1669(2)0.7602(2)3.32(7)C(42)0.2275(7)0.0305(6)0.2457(2)0.3590(2)0.6775(2)4.05(8)C(43)0.2481(7)-0.0478(6)0.2418(2)0.1931(2)0.5675(2)3.58(7)C(44)0.3049(8)-0.0642(6)0.2429(2)0.1669(2)1.0654(3)4.80(9)C(45)0.3411(7)-0.0010(6)0.0050(2)0.3009(2)0.5512(3)5.8(1)C(46)0.3209(7)0.0754(6)0.4816(2)0.2569(2)0.6934(3)4.08(8)C(111)0.3652(8)0.1136(8)0.5215(5)0.1316(4)0.9515(6)4.9(2)C(121)0.209(1)0.2412(9)0.1166(5)0.3242(4)0.8355(7)4.9(2)C(121)0.209(1)0.2413(9)0.3538(5)0.1388(4)0.7946(5)3.2(2)C(131)0.1543(8)0.919(8)0.4833(7)0.2706(6)1.0393(8)3.8(3)C(211)0.032(1)0.3354(1)0.5448(7)0.1984(7)1.0313(9)4.3(3)C(211)-0.035(1)0.353(1)<td< td=""><td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td></td<></td> | xyz $B^a(\tilde{A}^2)$ atomxy0.2416(1)0.21294(9)0.8944(1)3.39(4)C(34)0.1727(9)0.5405(7)0.1460(1)0.27066(9)0.6891(1)3.42(4)C(35)0.1321(9)0.4687(7)0.3358(1)0.24716(8)0.7424(1)3.16(4)C(36)0.1546(8)0.4125(6)0.3600(2)0.2953(2)0.9426(2)3.74(7)C(41)0.2643(6)0.0920(6)0.1094(2)0.1669(2)0.7602(2)3.32(7)C(42)0.2275(7)0.0305(6)0.2457(2)0.3590(2)0.6775(2)4.05(8)C(43)0.2481(7)-0.0478(6)0.2418(2)0.1931(2)0.5675(2)3.58(7)C(44)0.3049(8)-0.0642(6)0.2429(2)0.1669(2)1.0654(3)4.80(9)C(45)0.3411(7)-0.0010(6)0.0050(2)0.3009(2)0.5512(3)5.8(1)C(46)0.3209(7)0.0754(6)0.4816(2)0.2569(2)0.6934(3)4.08(8)C(111)0.3652(8)0.1136(8)0.5215(5)0.1316(4)0.9515(6)4.9(2)C(121)0.209(1)0.2412(9)0.1166(5)0.3242(4)0.8355(7)4.9(2)C(121)0.209(1)0.2413(9)0.3538(5)0.1388(4)0.7946(5)3.2(2)C(131)0.1543(8)0.919(8)0.4833(7)0.2706(6)1.0393(8)3.8(3)C(211)0.032(1)0.3354(1)0.5448(7)0.1984(7)1.0313(9)4.3(3)C(211)-0.035(1)0.353(1) <td< td=""><td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td></td<> | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

<sup>a</sup> Starred B values are for atoms that were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as  $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)]$ .

| Table 3. | Positional Parameters and | Their Estimated Standard Deviations for the Tetracobalt Complex | τ2 |
|----------|---------------------------|-----------------------------------------------------------------|----|
|          |                           |                                                                 |    |
|          |                           |                                                                 |    |

| atom               | x         | y          | Z         | B <sup>a</sup> (Å <sup>2</sup> ) | atom   | x        | y         | Z        | $B^{a}(\mathbf{A}^{2})$ |
|--------------------|-----------|------------|-----------|----------------------------------|--------|----------|-----------|----------|-------------------------|
| Co(1)              | 0.8203(2) | 0.26257(8) | 0.4876(2) | 3.44(5)                          | C(44)  | 0.938(1) | 0.4221(7) | 0.740(2) | 6.5(6)                  |
| $C_0(2)$           | 0.6354(2) | 0.26908(9) | 0.5234(2) | 3.48(5)                          | C(45)  | 0.974(1) | 0.3666(7) | 0.725(1) | 5.3(5)                  |
| $\tilde{C}_{0}(3)$ | 0.7294(2) | 0.20098(8) | 0.7224(2) | 3.69(6)                          | C(46)  | 0.897(1) | 0.3403(6) | 0.647(1) | 4.0(4)                  |
| Co(4)              | 0.9591(2) | 0.1599(1)  | 0.7211(3) | 8.6(1)                           | C(11)  | 0.802(1) | 0.2978(7) | 0.202(1) | 5.0(5)                  |
| Cl                 | 1.0918(6) | 0.0764(3)  | 0.7951(6) | 10.7(2)                          | C(112) | 0.711(1) | 0.3541(9) | 0.175(2) | 8.4(7)                  |
| S(1)               | 0.6831(3) | 0.2330(2)  | 0.3660(4) | 3.7(1)                           | C(113) | 0.619(2) | 0.364(1)  | 0.059(2) | 8.6(7)                  |
| S(2)               | 0.5794(3) | 0.1966(2)  | 0.5771(4) | 4.3(1)                           | C(114) | 0.560(2) | 0.4249(9) | 0.023(2) | 11.7(9)                 |
| S(3)               | 0.6572(3) | 0.2897(2)  | 0.7190(4) | 3.9(1)                           | C(121) | 1.011(1) | 0.2250(7) | 0.349(1) | 6.0(5)                  |
| S(4)               | 0.6977(3) | 0.3405(2)  | 0.4761(4) | 3.6(1)                           | C(122) | 1.116(1) | 0.2104(8) | 0.466(2) | 6.8(6)                  |
| $\mathbf{P}(1)$    | 0.8950(3) | 0.2821(2)  | 0.3596(4) | 4.3(1)                           | C(123) | 1.199(2) | 0.1545(8) | 0.461(2) | 8.5(7)                  |
| P(2)               | 0.4519(3) | 0.3156(2)  | 0.4138(4) | 4.4(1)                           | C(124) | 1.303(2) | 0.142(1)  | 0.574(2) | 12(1)                   |
| P(3)               | 0.7041(4) | 0.1681(2)  | 0.8784(4) | 5.4(1)                           | C(131) | 0.949(1) | 0.3419(6) | 0.403(1) | 4.9(5)                  |
| 0                  | 1.059(1)  | 0.2077(6)  | 0.750(1)  | 13.0(6)                          | C(132) | 1.005(1) | 0.3606(8) | 0.321(2) | 6.7(6)                  |
| <b>O</b> (1)       | 0.9108(7) | 0.1842(4)  | 0.5402(8) | 4.3(3)                           | C(133) | 1.037(2) | 0.4178(8) | 0.356(2) | 10.3(7)                 |
| O(2)               | 0.8051(7) | 0.1300(4)  | 0.6867(8) | 4.1(3)                           | C(134) | 0.946(2) | 0.463(1)  | 0.339(3) | 18(1)                   |
| O(3)               | 0.8789(7) | 0.2100(4)  | 0.8093(8) | 4.0(3)                           | C(211) | 0.427(1) | 0.3627(6) | 0.285(1) | 4.7(5)                  |
| O(4)               | 0.9276(7) | 0.2867(4)  | 0.6227(8) | 3.9(3)                           | C(212) | 0.303(1) | 0.3912(8) | 0.205(2) | 7.5(7)                  |
| C                  | 1.159(2)  | 0.1913(8)  | 0.792(2)  | 7.7(7)                           | C(213) | 0.291(2) | 0.431(1)  | 0.103(2) | 12(1)                   |
| C(11)              | 0.760(1)  | 0.1624(5)  | 0.378(1)  | 3.5(4)                           | C(214) | 0.171(2) | 0.457(1)  | 0.025(3) | 16(1)                   |
| C(12)              | 0.718(1)  | 0.1245(6)  | 0.297(1)  | 4.2(5)                           | C(221) | 0.355(1) | 0.2722(6) | 0.344(1) | 4.7(5)                  |
| C(13)              | 0.789(1)  | 0.0719(7)  | 0.298(1)  | 6.1(6)                           | C(222) | 0.385(1) | 0.2338(7) | 0.254(2) | 7.0(6)                  |
| C(14)              | 0.898(1)  | 0.0572(7)  | 0.382(1)  | 6.1(6)                           | C(223) | 0.299(2) | 0.2029(8) | 0.193(2) | 8.9(8)                  |
| C(15)              | 0.940(1)  | 0.0935(6)  | 0.462(1)  | 4.4(5)                           | C(224) | 0.333(2) | 0.1620(9) | 0.108(2) | 13(1)                   |
| C(16)              | 0.870(1)  | 0.1467(5)  | 0.462(1)  | 3.4(4)                           | C(231) | 0.380(1) | 0.3602(8) | 0.500(1) | 6.3(6)                  |
| C(21)              | 0.629(1)  | 0.1267(6)  | 0.543(1)  | 4.5(5)                           | C(232) | 0.430(2) | 0.4092(8) | 0.549(2) | 7.7(7)                  |
| C(22)              | 0.557(1)  | 0.0960(7)  | 0.466(1)  | 5.9(5)                           | C(233) | 0.385(2) | 0.4374(9) | 0.645(2) | 14(1)                   |
| C(23)              | 0.607(2)  | 0.0401(7)  | 0.458(2)  | 8.3(7)                           | C(234) | 0.433(3) | 0.486(1)  | 0.688(2) | 19(2)                   |
| C(24)              | 0.719(2)  | 0.0163(7)  | 0.519(2)  | 7.4(6)                           | C(311) | 0.653(2) | 0.1047(7) | 0.847(1) | 7.2(6)                  |
| C(25)              | 0.788(1)  | 0.0445(6)  | 0.596(1)  | 5.2(5)                           | C(312) | 0.641(2) | 0.0790(8) | 0.954(2) | 10.2(6)                 |
| C(26)              | 0.740(1)  | 0.1012(6)  | 0.609(1)  | 4.1(4)                           | C(313) | 0.611(2) | 0.019(1)  | 0.921(3) | 17(1)                   |
| C(31)              | 0.784(1)  | 0.3043(6)  | 0.819(1)  | 3.7(4)                           | C(314) | 0.508(3) | 0.032(2)  | 0.841(3) | 25(2)                   |
| C(32)              | 0.785(1)  | 0.3562(7)  | 0.870(1)  | 5.2(5)                           | C(321) | 0.833(1) | 0.1518(8) | 1.016(1) | 5.8(5)                  |
| C(33)              | 0.884(1)  | 0.3614(6)  | 0.957(1)  | 5.4(5)                           | C(322) | 0.921(2) | 0.1000(9) | 1.015(2) | 9.5(8)                  |
| C(34)              | 0.975(1)  | 0.3179(7)  | 0.995(1)  | 5.5(5)                           | C(323) | 1.036(2) | 0.102(1)  | 1.133(2) | 15(1)                   |
| C(35)              | 0.978(1)  | 0.2661(7)  | 0.944(1)  | 5.0(5)                           | C(324) | 1.115(3) | 0.055(2)  | 1.133(3) | 20(2)                   |
| C(36)              | 0.879(1)  | 0.2588(6)  | 0.855(1)  | 3.3(4)                           | C(331) | 0.603(1) | 0.2159(8) | 0.926(2) | 6.4(6)                  |
| C(41)              | 0.785(1)  | 0.3726(6)  | 0.587(1)  | 4.2(4)                           | C(332) | 0.484(2) | 0.2322(9) | 0.838(2) | 8.9(7)                  |
| C(42)              | 0.753(1)  | 0.4296(6)  | 0.605(2)  | 6.U(6)                           | C(333) | 0.411(2) | 0.280(1)  | 0.874(3) | 16(1)                   |
| C(43)              | 0.829(2)  | 0.4544(8)  | 0.686(2)  | 7.3(6)                           | C(334) | 0.303(2) | 0.299(1)  | 0.798(4) | 22(2)                   |



Figure 3. Structure of  $Co_4(mp)_4(PBu^{n_3})_3Cl(MeOH)$  (2). Carbon atoms of the phenyl rings and of the butyl groups of the phosphine are represented by spheres of arbitrary size for clarity. The oxygen atom of MeOH on Co(4) is also represented by an arbitrary sphere.

Table 4. Selected Atomic Distances (Å) and Bond Angles (deg) for the Tricobalt Complex 1

| Co(1)-Co(2)           | 2.641(1) | Co(2)-O(3)              | 1.950(7) |
|-----------------------|----------|-------------------------|----------|
| Co(1) - Co(3)         | 2.559(1) | Co(3) - O(4)            | 1.995(5) |
| Co(2) - Co(3)         | 2.505(1) | Co(1) - P(1)            | 2.197(3) |
| Co(1) - S(1)          | 2.203(3) | Co(2)-P(2)              | 2.221(3) |
| Co(1) - S(2)          | 2.200(2) | Co(3) - P(3)            | 2.227(2) |
| Co(2) - S(2)          | 2.226(2) | S(1) - C(11)            | 1.809(8) |
| Co(2) - S(3)          | 2.212(3) | S(2) - C(21)            | 1.783(8) |
| Co(2) - S(4)          | 2.240(2) | S(3) - C(31)            | 1.732(9) |
| Co(3) - S(1)          | 2.214(2) | S(4) - C(41)            | 1.768(8) |
| Co(3) - S(3)          | 2.242(3) | O(1) - C(12)            | 1.34(2)  |
| Co(3) - S(4)          | 2.201(2) | O(2)C(26)               | 1.35(1)  |
| Co(1) - O(4)          | 2.222(6) | O(3)-C(36)              | 1.33(2)  |
| Co(1)-Co(2)-Co(3)     | 59.57(5) | Co(2)O(3)C(36)          | 118.7(6) |
| Co(2) - Co(3) - Co(1) | 62.86(4) | $C_0(3) - O(4) - C(46)$ | 119.1(5) |
| Co(3) - Co(1) - Co(2) | 57.57(5) | O(3)-Co(2)-S(3)         | 86.6(2)  |
| Co(2)-S(3)-C(31)      | 98.3(3)  | O(4)-Co(3)-S(4)         | 86.3(2)  |
| Co(3) - S(4) - C(41)  | 98.1(3)  |                         |          |
|                       |          |                         |          |

the range 1.5-60 K and then keep almost constant in the range 60-300 K implying weak antiferromagnetic coupling of the complexes. The value of complex 2 is larger than that of 1, which implies a larger effective spin of the former.

The basic theory for the description of an exchange-coupled system is the Heisenberg model, where the Hamiltonian appropriate for magnetic exchange interaction is presented as

$$H = -2\sum_{i>j} J_{ij} S_i S_j \tag{1}$$

where  $S_i$  and  $S_j$  are the spins of magnetic centers *i* and *j*, respectively.  $J_{ij}$  is the isotropic coupling constant between magnetic centers *i* and *j* and characterizes the exchange interaction, which is antiferromagnetic when J < 0 and ferro-

magnetic when J > 0. On the basis of the isotropic Heisenberg model, the molar susceptibility can be expressed as

$$\chi_{\rm M} = \frac{Ng^2 \mu_{\rm B}^2}{3kT} \frac{\sum_{S_{\rm T}} S_{\rm T} (S_{\rm T} + 1) (2S_{\rm T} + 1) \exp(-E(S_{\rm T})/kT)}{\sum_{S_{\rm T}} (2S_{\rm T} + 1) \exp(-E(S_{\rm T})/kT)}$$
(2)

where N and k are Avogadro's and Plank's constants, respectively,  $\mu_B$  is the Bohr magneton,  $S_T = \sum S_i$ , the total electronic spin of the part concerned, and  $E(S_T)$  is the eigenvalue of the exchange interaction presented by eq 1. Equation 2 is known from Kambe's theory.<sup>20</sup> On the basis of this equation, theories for the temperature dependence of the molar magnetic susceptibility of complexes 1 and 2 were deduced, which will be published elsewhere. Calculations were performed by the nonlinear fitting program QCP230; the results obtained were shown in Table 7. The experimental data and the theoretical fitting results of the molar magnetic susceptibility ( $\chi_M$ ) versus temperature (T) are shown in Figures 5 and 6 for 1 and 2, respectively, together with the plots of  $\chi_M T$  versus T shown as inserts of the respective figures.

Assuming the distorted tetrahedrally coordinated Co(1) atom in complex 1 is in a medium spin state of S = 3/2 as usually the case for phosphine-substituted Co(II) complexes with tetrahedral structures<sup>21,22</sup> and the two square pyramidal Co(2,3) atoms are in a low spin state S = 1/2, the calculated g value and the antiferromagnetic coupling constants  $J_1, J_2$ , and  $J_3$  between Co-(1)-Co(2), Co(1)-Co(3), and Co(2)-Co(3) are 1.86, -8.7, -11.9, and -22.9 cm<sup>-1</sup>, respectively. The results indicates that the strongest coupling occurs between the two 5-coordinated Co atoms

<sup>(22)</sup> Cotton, F. A.; Faut, O. D.; Goodgame, M. D. L.; Holm, R. H. J. Am. Chem. Soc. 1961, 83, 1780.

Table 5. Selected Atomic Distances (Å) and Bond Angles (deg) for the Tetracobalt Complex 2

| Co(1)-Co(2)                | 2.617(3) | Co(4)-O(3)              | 1.97(2)  |
|----------------------------|----------|-------------------------|----------|
| Co(2) - Co(3)              | 2.633(3) | Co(4)-O                 | 1.94(2)  |
| Co(1) - S(1)               | 2.156(4) | Co(4)-Cl                | 2.284(6) |
| Co(1) - S(4)               | 2.152(4) | Co(1) - P(1)            | 2.230(7) |
| Co(2) - S(1)               | 2.294(5) | Co(2)-P(2)              | 2.292(4) |
| Co(2) - S(2)               | 2.294(5) | Co(3) - P(3)            | 2.218(6) |
| $C_{0}(2) - S(3)$          | 2.309(5) | S(1) - C(11)            | 1.77(1)  |
| Co(2) - S(4)               | 2.294(5) | S(2) - C(21)            | 1.78(2)  |
| Co(3) - S(2)               | 2.130(4) | S(3)-C(31)              | 1.80(1)  |
| Co(3) - S(3)               | 2.152(4) | S(4) - C(41)            | 1.73(1)  |
| Co(1)-O(1)                 | 1.973(9) | O(1) - C(16)            | 1.37(2)  |
| Co(1) - O(4)               | 1.920(9) | O(2)C(26)               | 1.35(2)  |
| Co(3) - O(2)               | 1.913(9) | O(3)C(36)               | 1.31(2)  |
| Co(3)-O(3)                 | 1.942(9) | O(4)C(46)               | 1.35(2)  |
| Co(4)-O(1)                 | 2.07(2)  | 0-C                     | 1.19(2)  |
| Co(4)-O(2)                 | 2.25(1)  |                         |          |
| $C_0(1) - C_0(2) - C_0(3)$ | 96.32(9) | $C_0(3) = O(2) = C(26)$ | 116.7(8) |
| $C_0(1) - S(1) - C(11)$    | 96.4(5)  | $C_0(3) = O(3) = C(36)$ | 113.6(8) |
| $C_0(1) = S(4) = C(41)$    | 97.8(4)  | $O(1) = C_0(1) = S(1)$  | 89.9(3)  |
| $C_0(3) - S(2) - C(21)$    | 97.4(4)  | O(2) - Co(3) - S(2)     | 89.2(3)  |
| $C_0(3) - S(3) - C(31)$    | 95.6(4)  | O(3) - Co(3) - S(3)     | 90.7(3)  |
| $C_0(1) = O(4) = C(46)$    | 116.3(7) | O(4) - Co(1) - S(4)     | 89.5(3)  |
| $C_0(1) = O(1) = C(16)$    | 113.0(6) | - ( ) - ( - ) - ( )     |          |
|                            |          |                         |          |

 Table 6.
 Comparison of Structural Parameters<sup>a</sup> for the Cobalt

 Cluster Complexes with Mixed Trialkylphosphine and
 o-Mercaptophenolate

|                                  | complex   |           |           |  |
|----------------------------------|-----------|-----------|-----------|--|
| param                            | 1         | 2         | 3         |  |
|                                  | Coa       | and P     |           |  |
| Co-Co                            | 2.641(1)  | 2.617(3)  | 2.627(1)  |  |
|                                  | 2.559(1)  | 2.633(3)  | 2.636(1)  |  |
|                                  | 2.505(1)  |           | • • •     |  |
| Co-P                             | 2.215(16) | 2.247(42) | 2.247(40) |  |
|                                  | Chela     | te Ring   |           |  |
| Co-S <sub>in</sub> <sup>b</sup>  | 2.207(8)  | 2.148(12) | 2.150(14) |  |
| Co-Sout <sup>b</sup>             | 2.241(1)  | 2.298(8)  | 2.302(18) |  |
| $Co-O_{in}^{b}$                  | 1.973(33) | 1.827(27) | 1.936(18) |  |
| Co-O <sub>out</sub> <sup>b</sup> | 2.222(6)  | 2.10(14)  | 2.072(56) |  |
| Co-S-C                           | 98.2(1)   | 96.8(10)  | 96.3(10)  |  |
| Co-O-C                           | 118.9(3)  | 114.9(19) | 114.8(27) |  |
| S-Co-O                           | 86.5(2)   | 89.8(7)   | 90.1(10)  |  |

<sup>a</sup> Esd's for average interatomic distances and angles were computed as follows:  $\sigma = [\sum (x_i - x)^2/(N-1)]^{1/2}$ . <sup>b</sup> In indicates inside the chelate ring; out indicates outside the ring.

Table 7. Magnetic Properties of Complexes 1 and 2

| complex | spin state                                           | <i>J</i> , cm <sup>−1</sup> | g            | TIP, <sup>a</sup> cgsu |
|---------|------------------------------------------------------|-----------------------------|--------------|------------------------|
| 1       | <sup>3</sup> /2, <sup>1</sup> /2, <sup>1</sup> /2    | -8.7<br>-11.9<br>-22.9      | 1.86         | -0.002                 |
| 2       | $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ | -5.2                        | 2.09<br>2.03 | 0.0003                 |

<sup>a</sup> TIP is the temperature-independent paramagnetism.

with two arenethiolate bridges and that the couplings of the 4-coordinate Co(1) with Co(3) and Co(2) are weaker, which is in agreement with the trend in M-M distances (2.641(1), 2.559-(1), and 2.505(1) Å, respectively).

In the case of complex 2, atom Co(4) in oxidation state III should have spin state S = 1 and the other atoms in oxidation level II should have spin state S = 1/2. Since the distance of Co(4) to either Co(1) or Co(3) is larger than 3 Å, and Co(4) is ligated to Co(1,3) only through the rather weak aryloxy bridges, no interaction either electronic or magnetic is assumed and atom Co(4) is considered as an isolated magnetic center. If the interaction between Co(1) and Co(3) is negligible, and that between Co(1) and Co(2) is equivalent to that between Co(2)



2(R<sub>3</sub>P)Comp<sub>2</sub> + Co(HOCH<sub>3</sub>)CI + Co(PR<sub>3</sub>)





Figure 5. Experimental and calculated (--) temperature dependence of  $\chi_M$  (cgsu) for compound Co<sub>3</sub>(mp)<sub>2</sub>(Hmp)<sub>2</sub>(PEt<sub>3</sub>)<sub>3</sub> (1). The relationship of  $\chi_M T$  (cgsu-K) vs T (K) is shown in the insert.



**Figure 6.** Experimental and calculated (—) temperature dependence of  $\chi_{\rm M}$  (cgsu) for compound Co<sub>4</sub>(mp)<sub>4</sub>(PBu<sup>n</sup><sub>3</sub>)<sub>3</sub>Cl(MeOH) (2). The relationship of  $\chi_{\rm M}T$  (cgsu·K) vs T (K) is shown in the insert.

and Co(3) (due to the same environment of Co(1) and Co(3)) with a coupling constant J, the calculated value is -5.2 cm<sup>-1</sup>, which agrees with the long average Co–Co distance of 2.625(11) Å.

The residual error (Er) of fitting expressed by eq 3 can be applied to examine the accuracy of the exchange parameters J

<sup>(23)</sup> Hendrichson, D. N.; Christou, G.; Schmitt, E. A.; Libby, E.; Bashkin, J. S.; Wang, S. Y.; Tsai, H. L.; Vincent, J. B.; Boyd, P. D. W.; Huffman, J. C.; Folting, K.; Li, Q.-Y.; Streib, W. E. J. Am. Chem. Soc. 1992, 114, 2455.

obtained:23

$$Er = \frac{\sum_{i} [\chi_{i}(exp) - \chi_{i}(calc)]}{\sum_{i} \chi_{i}(exp)}$$
(3)

The behavior of Er as a function of  $J_1$ ,  $J_2$ , and  $J_3$  for complex 1, and of J for complex 2, is calculated according to this equation. There is a sharp minimum in Er versus  $J_1$ ,  $J_2$ , and J, which means that these three parameters are well determined. The Er values are less sensitive to variation in  $J_3$  and the minimum in Er versus  $J_3$  is not so well defined, which results in relatively low accuracy of  $J_3$ . Plots of Er versus  $J_1$ ,  $J_2$ ,  $J_3$ , and J are included in the supplementary material. Acknowledgment. We are grateful for the financial assistance from the Climbing Program-National Key Project for Fundamental Research, the NNSF of China, and the NSF of the Province of Fujian. Stimulating discussions from Prof. Maochun Hong and Dr. Rong Cao are gratefully appreciated. Thanks are also due to Mr. Shiyong Fan of the Magnetism Laboratory, Institute of Physics, Beijing, for measurements of the variabletemperature magnetic susceptibilities, to the State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, China, for <sup>31</sup>P NMR measurements, and to Ms. Xianling Kong for experimental assistances.

Supplementary Material Available: Complete tables of atomic distances and bond angles, general displacement parameters (Us), and crystallographic data and data collection parameters and figures showing error vs J calculations of complexes 1 and 2 (13 pages). Ordering information is given on any current masthead page.